GENETIC DIVERSITY ANALYSIS OF COTTON (Gossypium hirsutum L.) GENOTYPES USING RAPD MARKERS

PARKHIYA, S. M. AND *MEHTA, D. R.

DEPARTMENT OF BIOTECHNOLOGY COLLEGE OF AGRICULTURE JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH – 362 001, GUJARAT, INDIA

*EMAIL: drmehta@jau.in

ABSTRACT

Cotton (Gossypium hirsutum L. 2n=52, family: Malvaceae) is one of the most important commercial fiber and oil yielding crop in India. Genetic variability and relationships among fifteen cotton genotypes were investigated using six RAPD primers. These amplified a total of 61 bands/alleles out of which 55 bands were polymorphic (90.16 %) with an average of 9.16 bands per primer. The primer OPA-07, OPA-18 and OPD-05 demonstrated 100 per cent polymorphism. The polymorphic information content was recorded from 0.858 to 0.903. The phylogenetic tree constructed by UPGMA method generated two main clusters (cluster I and II) with only one genotype G. Cot-18 grouped as solitary in cluster I. The cluster II consisted of rest of the genotypes grouped together in their respective sub-clusters. Large numbers of single type of markers could be screened for genetic diversity in cotton genotypes and utilized diverse genotypes in crop improvement programme to enhance crop productivity of cotton.

KEY WORDS: Cotton, Genetic diversity, RAPD

INTRODUCTION

Cotton is one of the most important commercial fibre and oil yielding crops playing a key role in economic, political and social affairs of the world. Because of its worldwide economic importance, cultivars are constantly being released in the challenges have world. Several overcome in cotton genomic research and now genetic linkage maps of cotton have been developed based on both intra-specific hirsutum) inter-specific (intra and Gossypium (Gossypium hirsutum x barbadense) population and the OTLs responsible for leaf shapes, plant trichomes, photoperiodism, stomatal conductance, disease resistance, yield and fibre quality traits have been mapped (Preetha and Raveendren, 2008).

ISSN: 2277-9663

The random amplified polymorphic DNA (RAPD) technique of Williams et al. (1990) provides an unlimited number of markers which can be used for various purposes like cultivar analysis and species identification in most crop plants. DNA fingerprinting studies to assess genetic purity with RAPD have already been conducted in cotton (Soregaon, 2004). Keeping in view the above, the present investigation was planned to study molecular characterization of upland cotton (Gossypium hirsutum L.) genotypes through molecular markers (RAPD) along with to find out the phylogenetic relationship among different

www.arkgroup.co.in Page 467

cotton genotypes and to know the degree of genetic divergence among different cotton genotypes.

MATERIALS AND METHODS

The experimental materials consisted of fifteen genotypes of cotton (Gossypium hirsutum) which were collected from Cotton Research Station, J.A.U., Junagadh. Total genomic DNA was isolated from young leaves of different cotton plants grown in pots. DNA extraction was carried out by CTAB method as described by Doyle and Doyle (1987) with minor modifications. Leaf tissues were cut into small pieces, homogenized and digested with extraction buffer (pH= 8.0): 1 M Tris HCl, 0.5 M EDTA (Ethylene diaminetetraacetic acid), 5M NaCl, 2 X CTAB, 4 % PVP and βmercaptoethanol. After incubation at 65 °C in water bath for one hour with gentle swirling, the mixture was emulsified with an equal volume of Phenol: Chloroform: Isoamyl alcohol (25:24:1). Equal volume of ice-cold iso-propanol was added and precipitate **DNA** pelleted by centrifugation. The pellets were washed with 70 % alcohol, air dried and re-suspended in 100 µl of TE buffer (1 M Tris HCl, 0.5M EDTA, pH 8.0) and finally treated with 1 µl of RNase. DNA was loaded into the sample Spectrophotometer spot of Nanodrop Scientific. U.S.A.) and (Thermo the concentration of DNA and absorbance at 260 nm and 280 nm were measured. The A₂₆₀/A₂₈₀ ratio was automatically calculated by the software.

The method given by Rana et al., (2006) with minor modifications was followed for molecular characterization through RAPD. The RAPD assays were performed using random 10-mer oligonucleotide primers from Operon Technology Inc., USA. (Table 1). The amplified products of RAPD were analyzed using 1.5 % agarose gel in TBE buffer. In order to score and preserve banding pattern,

photograph of the gel was taken in a Gel Documentation System, under UV transilluminator. The presence of each band was scored as '1' and its absence as '0'. The data matrix was read by NTSYS-pc version 2.02 (Numerical Taxonomy and Multivariate Analysis System for Personal Computers, Exeter Software) developed by Rohlf (2000) and analyzed by the SIMOUAL (similarity for qualitative data) program with Jaccard's similarity coefficient. The SIMQUAL is a program for computing a variety of similarity and dissimilarity coefficients for qualitative data. The qualitative nature of the absence (0) or presence (1) state of a RAPD marker was used as the basis for similarity analysis among various cotton genotypes. A matrix of 0 and 1 act as the input, and the output is a matrix of similarity or dissimilarity coefficients. The resultant similarity matrix was entered into SAHN (sequential, agglomerative, hierarchical, and clustering nested method) clustering program, a tree matrix was produced and a dendrogram was constructed using UPGMA (un-weighted pair-group method arithmetic averages). The assumption underlying the use of UPGMA clustering is the equal rate of evolution along all the dendrogram branches. The dendrogram of publication quality were produced from the output tree file of SAHN by TREE (tree display) program in graphics mode.

Clustering methods create clusters of the data, no matter whether there are true clusters in the data or not, so a check was made for the existence of true clusters. This was done by using the tree matrix produced by SAHN to calculate the cophenetic values of similarity or dissimilarity by the program COPH (cophenetic values). The cophenetic value matrix was compared with the original tree matrix for goodness of fit of the cluster analysis to the data. This type of cophenetic correlation was done by the MXCOMP (matrix comparison) program (Rohlf, 2000).

The program **MXCOMP** plots cophenetic value matrix against the original tree matrix, and computes the Cophenetic correlation coefficient (r) and the Mantel test statistic (Z).

RESULTS AND DISCISSION Polymorphism as detected by RAPD analysis

Out of eighteen RAPD primers used, six primers viz., OPA-07, OPA-18, OPB-18, OPC-05, OPD-05 and OPG-12 showed the amplification. They amplified a total of 61 bands/alleles in which 55 bands/alleles were polymorphic with average 9.16 bands per primer and six were monomorphic. Two unique polymorphic bands were observed in two genotypes i.e. GTHV-95/145 by OPC-05 (1128 bp) and OPG-12 (719 bp) and BS-279 by OPA-18 (1220 bp) and OPB-18 (640 bp). From the data, it was observed that 9.84 per cent monomorphic bands and 90.16 per cent of polymorphic bands were observed (Figure 1 and Table 1).

El-Zanaty et al. (2012) examined 19 RAPD and eight agronomic traits to estimate the genetic diversity in Egyptian cotton. RAPD primers produced a total of 101 amplicons, which generated 86.25 per cent polymorphism. Number of amplification products ranged from 2 to 7. findings were also recorded by Iqbal et al. (1997) and Vafaie-Tabar et al. (2003). Igbal et al. (1997) detected forty-nine primers polymorphism in all twenty-three cotton varieties, while one produced monomorphic amplification profile. They reported that a total of 349.0 bands were amplified, of which 89.1 per cent were polymorphic. Vafaie-Tabar et al. (2003) reported 87 per cent polymorphism and a genetic similarity of 30 per cent as a result of testing 50 random decamer primers on 22 cotton genotypes belonging to tetraploid and diploid cotton species.

The primer OPC-05 produced the highest thirteen bands (alleles) followed by

OPA-07 and OPA-18 with twelve bands and eleven bands, respectively. OPG-12 produced nine bands and OPB-18 and OPD-05 both produced eight bands. The average percentage of polymorphism recorded was 90.16 per cent per primer for all the six RAPD primers. The primer OPA-07, OPA-18 and OPD-05 gave maximum polymorphism (100%), while primer OPB-18, OPC-05 and OPG-12 exhibited 87.5 per cent, 76.92 per cent and 77.77 per cent polymorphism, respectively. In present study, the amplified fragments were in the range of 147 bp (OPA-18) to 1940 bp (OPC-05). Similar findings were also reported by Dongre et al. (2004) and Surgun et al. (2012). Dongre et al. (2004) worked with 21 RAPD primers which generated 150 markers which RAPD primers 15 polymorphic and produced 76 markers in cotton with size ranged between 100 bp and 2000 bp. Surgun et al. (2003) reported that 34 primers showed amplification of 319 fragments ranging from 200 bp to 2800 bp in nine different genotypes of cotton.

The polymorphic information content (PIC) was calculated for each primer (Table 1) and it was recorded from 0.858 to 0.903. The highest PIC value of 0.903 was recorded by OPA-07, while the lowest PIC value of 0.858 was recorded by OPB-18. RAPD primer index (RPI) ranged from 6.864 to 11.64 with an average of 9.008 per primer. The highest RPI value was obtained by OPB-18 and the lowest by OPC-05 (Table 1).

Genetic relationship among cotton genotypes

Jaccard's coefficient of similarity between 15 cotton genotypes ranged from 31.9 to 90.3 per cent. Patil et al. (2007) generated RAPD profiles for four cotton genotypes using nineteen random decamer primers with genetic similarity ranged from 46 to 91 per cent. Likewise, Sharaf et al. (2009) also recorded genetic similarity

among seven cotton genotypes which ranged from 64.8 % to 93.2 % which supported the present findings.

Fifteen cotton genotypes grouped into two main clusters I and II with an average similarity of 49 per cent (Figure 2). The cluster I consisted of solitary genotype of G.Cot-18. The cluster II consisted of fourteen genotypes and these were divided into two sub-clusters, IIA and IIB. The sub-cluster IIA consisted of thirteen genotypes and these were again further divided into two sub-cluster IIAi and IIAii. The sub sub-cluster IIAi was grouped into twelve genotypes viz., G. Cot-12, MR-786, GISV-254, BS-27, GJHV-460, BC-68-2, 76-IH-20, GBHV-148, GJHV-503, H-1316, BS-279 and GTHV-95/145. G. Cot-12 and MR-786 shared a similarity of 90.3 per cent. Likewise, GISV-254 and BS-27 shared similarity of 88 per cent; GISV-254 and GBHV-148 (86%); BC-68-2 and 76-IH-20 (85.1%);**GBHV-148** and **GJHV-503** and H-1316 and GJHV-460 (84.9%);(79.2%); BC-68-2 and GJHV-503 (78.8%). The sub sub-cluster IIAii consisted of only one genotype GBHV-170. The sub-cluster IIB also consisted of only one genotype (LRA-5166). The cluster analysis showed the highest (90.3%) similarity was observed between the genotypes G. Cot-12 and MR-786, while the lowest (31.9 %) similarity between G. Cot-18 and GBHV-148.

CONCLUSION

Genetic variability and relationships among fifteen cotton genotypes were amplified by six RAPD primers with a total of 61 bands/alleles out of which 55 bands were polymorphic (90.16 %) with an average of 9.16 bands per primer. Two unique polymorphic bands were observed in two genotypes i.e. GTHV-95/145 by OPC-05 (1128 bp) and OPG-12 (719 bp) and BS-279 by OPA-18 (1220 bp) and OPB-18 (640 bp). The primer OPA-07, OPA-18 and OPD-05 demonstrated 100 per cent polymorphism. The polymorphic information content was recorded from 0.858 0.903. to phylogenetic tree constructed by UPGMA method generated two main clusters (cluster I and II) with only one genotype G. Cot-18 grouped as solitary in cluster I. The cluster II consisted of rest of the genotypes grouped together in their respective sub-clusters.

REFERENCES

- Dongre, A.; Vilas, P. and Santosh, G. (2004). Characteriation of cotton (Gossypium hirsutum) germplasm using ISSR, RAPD and agronomical values. Indian J. Biotechnol., 3: 388-
- Doyle, J. J. and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19: 11-15.
- El-Zanaty, A. M.; Salem, K. F. M. and Esmail, R. M. (2012). Detection of genetic diversity in egyptian cotton (gossypiumbarbadense L.) varieties using **RAPD** markers and morphological traits. Nature and Science, 10(1): 123.
- Iqbal, M. J.; Aziz, N.; Saeed, N. A.; Zafar, Y. and Malik, K. A. (1997). Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet., 87: 934-940.
- Patil, M. D.; Biradar, D. P.; Patil, V. C.; Janagoudar, B. S. and Nadaf, H. L. (2007). Analysis of genetic diversity of cotton genotypes using RAPD PCR technique. Karnataka J. Agric. Sci., 20(2): 215-217.
- Preetha, S. and Raveendren, T. S. (2008). Molecular marker technology in cotton. J. Biotech. Mol Biol. Review, 3(2): 32-45.
- Rana, M. K.; Singh, S. and Bhat, K. V. (2006). RAPD, STMS and ISSR markers for genetic diversity and hybrid seed purity testing in Cotton. Seed Sci. Tech., 35: 709-721.

www.arkgroup.co.in **Page 470**

- Rohlf, F. J. (2000). *NTSYS-pc:* Numerical taxonomy and multivariate analysis
 - system, version 2.02 manual. Exeter Software, New York.
- Sharaf, A. N.; El-kadi, D. A.; Alatwani, H. F.; Gamal El-Din A. Y. and Abd El-Hadi A. A. (2009). Genetic studies on some cotton genotypes using DNA molecular markers. In: 4th Conference on Recent Technologies in Agriculture, Egypt, 2009. pp. 167-177.
- Soregaon, C. D. (2004). Studies on genetic introgression in interspecific crosses of cotton. M. Sc. (Agri.) Thesis (Unpublished) Submitted to University of Agricultural Sciences, Dharwad.

- Surgun, Y.; Col, B. and Burun, B. (2012). Genetic diversity and identification of some Turkish cotton genotypes (*Gossypium hirsutum* L.) by RAPD-PCR analysis. *Turk. J. Biol.*, **36:** 143-150.
- Vafaie-Tabar, M.; Chandrashekaran, S.; Singh, R. P. and Rana, M. K. (2003). Evaluation of genetic diversity in Indian tetraploid and diploid cotton (*Gossypium* spp.) by morphological characteristics and RAPDs. *Indian J. Genet.*, **63(3)**: 230-234.
- Williams, J.; Kubelik, A.; Liviak, J. L.; Rafalski, J. A. and Tingey, S. V. (1990). DNA polymorphism amplified by random primers are useful as genetic markers. *Nucleic acid Res.*, **18**: 6531-6535.

Table 1: Size, number of amplified bands, per cent polymorphism, PIC and RPI obtained by RAPD primers

Sr. No.	RAPD Primers	Allele/Band Size (bp)	Total Number of Allele (A)	Polymorphic Bands (B)			Monomorphic	% Polymorphism	PIC	RPI
				S	U	Total Bands (T)	Bands	(B/A)	Value	(PIC×A)
1	OPA-07	147-1034	12	12	0	12	0	100	0.903	10.83
2	OPA-18	147-1220	11	10	1	11	0	100	0.898	9.878
3	OPB-18	441-1345	8	6	1	7	1	87.5	0.858	6.864
4	OPC-05	154-1940	13	9	1	10	3	76.92	0.896	11.64
5	OPD-05	387-1472	8	8	0	8	0	100	0.870	6.96
6	OPG-12	251-1720	9	6	1	7	2	77.77	0.876	7.88
TOTAL			61	51	4	55	6	-	-	-
AVERAGE			-	1	-	9.16	-	90.16	0.883	9.008

S = Shared;

U = Unique;

T =Total Polymorphic Bands;

PIC = Polymorphism information content;

 $RPI = (RAPD \ Primer \ Index)$

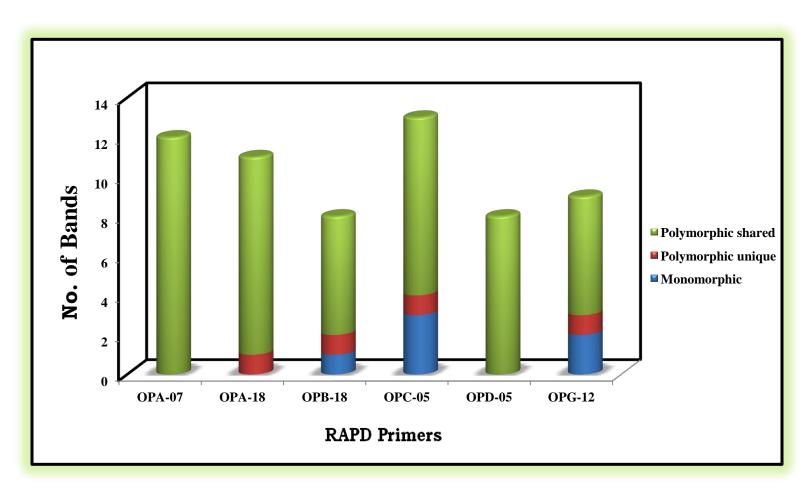


Fig. 1: Properties of polymorphic and monomorphic bands amplified by the RAPD primers

www.arkgroup.co.in Page 473

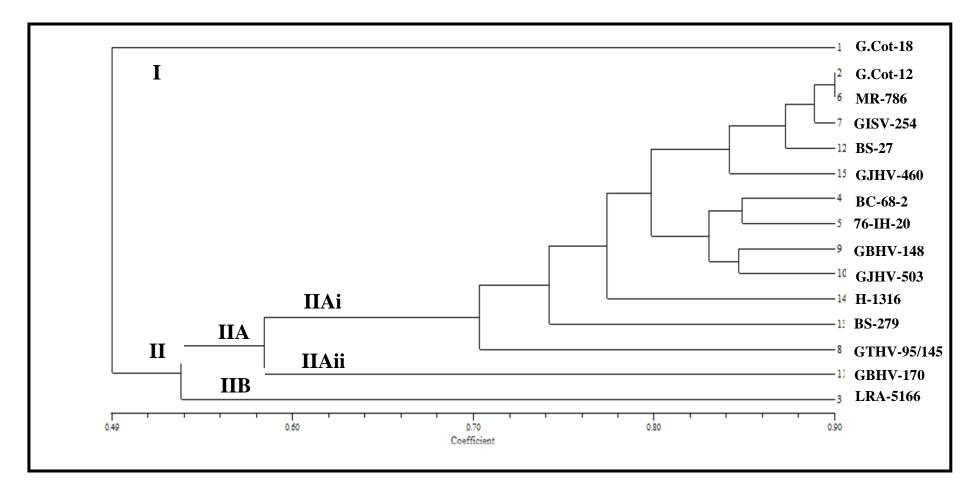


Fig. 2: Dendrogram depicting the genetic relationship among 15 cotton genotypes based on RAPD markers